
Mark Scheme Refraction Past Paper Questions Jan 2002 to Jan 2009

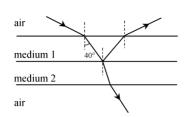
NOTE: Jan 2009 onwards are new spec'

Que	stion 6		
(a)	(i)	(refractive index of water = 1/sin 49.0) = 1.33 (not 1.3 or 1.325) ✓	
	(ii)	ray P shown in the air to right of vertical ✓	
		refracted away from the normal in the correct direction ✓	4
		correct partial reflection shown ✓	
(b)	(i)	critical angle for water-air boundary = 49.0° or angle of (incidence of) Q is θ _c ✓ Q6 Jan 20	09
		the angle of incidence (of R) exceeds the critical angle ✓	
	(ii)	figure 6 shows that R undergoes TIR at water surface and strikes the glass side ✓	6
		angle of incidence at glass side = 30° ✓	
		R enters the glass and refracts towards the normal ✓	D1
		because $n_{\rm g}$ > $n_{\rm w}$ \checkmark (or water is optically less dense than glass)	
		(calculates angle = 26.2° gets last two marks)	
		Total	10

- **4**(a) Ray diagram to show:
 - (i) refraction towards normal at boundary ✓ emerging ray refracted away from normal ✓
 - (ii) reflection at boundary with $i \approx r$ \checkmark emerging ray refracted away from normal \checkmark

(ii)
$$_{1}n_{2} = \frac{n_{2}}{n_{1}} = \frac{\sin \theta_{1}}{\sin \theta_{2}} \checkmark$$

$$\frac{1.60}{1.40} = \frac{\sin 20^{\circ}}{\sin \theta_{2}} \checkmark$$


$$\theta_{2} = 17(.4)^{\circ} \checkmark$$
Q4 Jan 2002

(c)
$$(\sin \theta_c = 1/n \text{ gives})$$
 $\sin \theta_c = 1/1.60 \checkmark$ $\theta_c = 38.7^\circ \checkmark$ (2)

(10)

3(a)

Q3 Jun 2002

- (i) incident angle > 40° ✓ angle of refraction into medium 2 < 40° ✓ emergent ray with correct refraction ✓
- (ii) reflection at boundary between media with $i \approx r$ \checkmark (hence) emergent ray at approximately same angle as incident ray and showing correct refraction \checkmark $\max_{\max}(4)$

(b)(i) (use of
$$_1n_2 = \frac{\sin\theta_1}{\sin\theta_2}$$
 gives) $1.35 = \frac{\sin\theta_1}{\sin 40}$ \checkmark $\theta_1 = 60(2)^\circ$

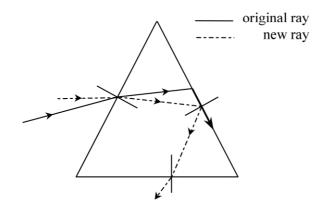
(ii)
$$\left(\text{use of }_{1}n_{2} = \frac{n_{2}}{n_{1}} = \frac{\sin\theta_{1}}{\sin\theta_{2}} \text{ gives }\right)$$
 $\frac{1.65}{1.35} = \frac{\sin 40}{\sin\theta_{2}} \checkmark \checkmark$

$$\theta = 31.7^{\circ} \checkmark \tag{5}$$

(c) (total internal reflection) only occurs when light goes
from a higher to a lower refractive index
[or goes from a more dense to a less dense medium/material] ✓ (1)
(10)

7
(a)(i) θ_c marked \checkmark

Q7 Jan 2003


(a)(ii)
$$\sin \theta_c = \frac{1}{n} \checkmark \left(= \frac{1}{1.55} \right)$$

 $\theta_c = 40.2^\circ \checkmark$ (3)

(b)
$$n = \frac{\sin \theta_1}{\sin \theta_2} \checkmark$$

$$(\theta_2 = 90 - 75.2 = 14.8^{\circ})$$

$$\theta_1 (= \sin^{-1} \{1.55 \sin 14.8\}) = 23.3^{\circ} \checkmark$$
(2)

(c)

correct refraction at first surface ✓ total internal refraction at second surface ✓ correct refraction at third surface ✓

(3) (8) 5

(a)(i) (use of
$$n = \frac{c_1}{c_2}$$
 gives) $c_{\text{glass}} \left(= \frac{3.00 \times 10^8}{1.45} \right) = 2.07 \times 10^8 \text{ m s}^{-1} \checkmark$

Q5 Jun 2003

(a)(ii) use of
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$c_{\text{liquid}} = \frac{2.07 \times 10^8 \times \sin 29.2^{\circ}}{\sin 26.6^{\circ}} = 2.26 \times 10^8 \text{ m s}^{-1} \checkmark$$
(allow C.E. for values of c_{glass} from (i))

(b) use of
$$_{1}n_{2} = \frac{c_{1}}{c_{2}}$$
 and $_{1}n_{2} = \frac{n_{2}}{n_{1}}$
to give $n_{\text{liquid}} = \frac{1.45 \times 2.07 \times 10^{8}}{2.26 \times 10^{8}} = 1.33$

or
$$n_l = \frac{c_1}{c_{\text{liquid}}} = \frac{3 \times 10^8}{2.26 \times 10^8} = 1.33$$
 (allow C.E. for value of c_{liquid})

[or use
$$_1n_2 = \frac{\sin\theta_1}{\sin\theta_2}$$
 and $_1n_2 = \frac{n_2}{n_1}$ to give correct answer] (2)

(c) diagram to show:

total internal reflection on the vertical surface refraction at bottom surface with angle in air greater

than that in the liquid $(29.2^{\circ}) \checkmark (2)$

<u>(7)</u>

3

- (a)(i) diagram to show: refraction towards normal on entry ✓ total internal reflection shown along fibre ✓ refraction away from normal on leaving glass ✓
 - (ii) speed of light decreases on entry into glass <u>and</u> increases on leaving ✓ (4)

(b)(i) (use of
$$\sin \theta_c = \frac{1}{n}$$
 gives) $\sin \theta_c = \frac{1}{1.57}$ **Q3 Jan 2004** $\theta_c = 39.6^{\circ}$

(ii)
$$_{1}n_{2} \left(= \frac{n_{2}}{n_{1}} \right) = \frac{1.57}{1.47} \checkmark (= 1.07)$$

$$\sin \theta_{\rm c} = \frac{1}{1.07} \checkmark$$

$$\theta_{\rm c} = 69.4^{\rm o} \checkmark$$

(iii) to protect the core surface [or to prevent cross-over] ✓

(<u>6</u>) (<u>10</u>)

4

(a)(i) (angle) F ✓

Q4 Jun 2004

- (ii) angle D is greater than angle B
 [or at the glass-water boundary, ray R₁ refracts away from the normal] ✓
- (b)(i) (use of $\sin \theta_c = \frac{1}{n}$ gives) $\sin 48.8 = \frac{1}{n}$ \checkmark $n = 1.3 \checkmark (1.33)$
 - (ii) use of $\frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$ $\frac{\sin 48.8}{\sin 42.9} = \frac{c_{\text{water}}}{c_{\text{glass}}} \checkmark$ $\frac{c_{\text{water}}}{c_{\text{observed}}} = 1.1 \checkmark (1.11)$ (5)

Question 6

Q6 Jan 2005

(a)
$$c_g \left(= \frac{c_a}{n} \right) = \frac{3 \times 10^8}{1.5} \checkmark$$

= $2.0 \times 10^8 \,\mathrm{m \, s^{-1}} \checkmark$ (2)

- (b)(i) $\sin \theta_1 (= n \sin \theta_2) = 1.5 \times \sin 15 \checkmark$ $\theta_1 = 23^{\circ} \checkmark$ (22.8°)
 - (ii) use of $\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$ (or equivalent) $n_2 = \frac{1.5 \times \sin 60}{(\sin 90)} \checkmark$ $= 1.3 \checkmark$ (5)
- (c) total internal reflection at A ✓
 correct refraction out of glass at r.h. surface ✓ (same angles as l.h. side)
 (2)
 (9)
 - Quality of Written Communication marks: Q3 (a) (i) and Q5 (b) (iii) $\checkmark\checkmark$ (2)

<u>(2)</u>

Question 4	Q4 Jun 2005	
(a)	diagram to show: total internal reflection on side face ✓ ray emerging at base bent away from normal ✓ with ≈ correct angles ✓	3
(b)	$n = \frac{1}{\sin \theta_{c}} \checkmark$ $= \frac{1}{\sin 45} \text{ with calculation } \checkmark (= 1.41)$	2
(c)	$\sin \theta_{i} = n \sin \theta_{r} \checkmark$ $\sin \theta_{i} = 1.41 \times \sin 40 \checkmark$ $\theta_{i} = 65^{\circ} \checkmark$	3

Question 5		
(a) (i)	(use of $n = \frac{\sin \theta_1}{\sin \theta_2}$ gives) $1.45 = \frac{\sin \theta_1}{\sin 15.5^\circ}$ Q5 Jan 2006 $\theta_1 = 22.8^\circ$ \checkmark	
(ii)	$n = \frac{1}{\sin \theta_{c}} \checkmark$ $n = \left(\frac{1}{\sin 38.7^{\circ}}\right) = 1.6(0) \checkmark$	7
(iii)	use of ${}_{1}n_{2} = \frac{\sin\theta_{1}}{\sin\theta_{2}}$ and ${}_{1}n_{2} = \frac{n_{2}}{n_{1}}$ [or $n_{1}\sin\theta_{l} = n_{2}\sin\theta_{l}$] 1.45 $\sin\theta_{3} = 1.60\sin 51.3$ $\theta_{3} = 59.4^{\circ}$ (allow C.E. for value of n from (ii))	
(b)	block $1 \checkmark$ (requires some explanation) reference to $\frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2} \checkmark$ [or statement such as light refracts/bends towards normal as it enters a denser/higher refractive index material, or block 1 has lower refractive index]	2
(c)	reflection at boundary with $i = r \checkmark$ refraction (at bottom surface) bending away from normal \checkmark	2
	Total	11

Question 3		
(a)	$n = \left(\frac{\sin \theta_1}{\sin \theta_2}\right) = \frac{\sin 15.0^{\circ}}{\sin 10.0^{\circ}} \checkmark (= 1.49)$	1
(b)	TIR on hypotenuse and refraction at top surface ✓ 55°, 10° and 15° all marked correctly ✓	2
(c) (i)	use of $_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}}$ and $_{1}n_{2} = \frac{n_{2}}{n_{1}}$ [or $n_{1} \sin \theta_{1} = n_{2} \sin \theta_{2}$] \checkmark 1.49 sin 55° = 1.37 sin θ_{2} \checkmark $\theta_{2} = 63^{\circ}$ \checkmark	
(ii)	(use of $n = \frac{c_1}{c_2}$) gives $1.37 = \frac{3.0 \times 10^8}{c_2}$ $c_2 = 2.2 \times 10^8 \text{ m s}^{-1} \checkmark (2.19 \times 10^8 \text{ m s}^{-1})$	7
(iii)	refraction at boundary between prisms, refracted away from normal ✓ emerging ray (r.h. vertical face) refracting away from normal ✓	
	Total	10

Ques	stion 6				
(a)	(i)	use of $n_{\rm w}$ = speed of light in air/speed of light in water \checkmark $c_{\rm w}$ (= 3.00 \times 10 ⁸ /1.33) = 2.26 \times 10 ⁸ ms ⁻¹ \checkmark		2	
	(ii)	use of $n = 1 / \sin \theta_c$ $\theta_c (= \sin^{-1}(1 / 1.33)) = 48.8^\circ \checkmark$ Q6 Jan 20	07	3	
(b)		air		3	
		mark for each ra	y 🗸 🗸		
(c)		the critical angle (for water-oil boundary) is larger ✓ there is a smaller difference between the refractive index of the and water than there is between the air and water ✓	ne oil	2	
			Total	8	

Question 4			
(a)	(i)	the angle of incidence at the more dense - less dense boundary ✓	
		producing an angle of refraction of 90° ✓	
		(or definitions in terms of minimum or maximum angles of incidence for TIR or refraction)	4
	(ii)	use of $\sin \theta_c = 1/n \checkmark$	
		θ (= sin ⁻¹ 1/1.54) = 40.5° \checkmark Q4 Jan 2	2008
(b)		ray P showing TIR ✓	
		ray Q showing refraction at 90° ✓	3
		ray R showing correct refraction ✓	

			Total	13
		θ _c = 71.5° ✓		
		$\theta_{\rm c} = \sin^{-1} (1.46/1.54) \checkmark$		
	(iii)	$_{1}n_{2} = \sin \theta_{1}/\sin \theta_{2} = n_{2}/n_{1} \checkmark$		
		or to prevent cross-talk ✓		
		or to prevent leakage of light		
	(ii)	to protect the core		6
		reference to light speed increase	any two points ✓✓	
		increase in critical angle		
		bending away from the normal		
(c)	(i)	ray would leave the core		

Ques	stion 5		
(a) (i)		$n_{\rm glass}$ (= sin $\theta_{\rm air}$ /sin $\theta_{\rm glass}$) = sin 45°/sin 29° \checkmark	
		$n_{\text{glass}} = 1.46 \checkmark$ Q5 Jun 2	2008
	(ii)	use of $_{\rm glass}n_{\rm gel}=n_{\rm gel}/n_{\rm glass}=\sin\theta_{\rm glass}/\sin\theta_{\rm gel}$	
		or	5
		$\sin \theta_{\rm c} = \frac{n_2}{n_1} \text{ or } \frac{n_{gel}}{n_{glass}} \checkmark$	
		$n_{\text{gel}} = 1.46 \times \sin 74^{\circ}/\sin 90^{\circ} \checkmark$	
		n _{gel} = 1.40 ✓	
(b)		TIR from the bottom surface ✓	
		with 74° marked ✓	
		refracting away from the normal from the side of the prism ✓	4
		emergent ray (horizontal) with angles marked ✓	
(c)		$v = c/n = 3.00 \times 10^8/1.59 = 1.89 \times 10^8 \text{m/s}$	
		$t = (s/v) = 5.00/1.89 \times 10^8 = 2.65 \times 10^{-8} \text{ s} \checkmark [2 \rightarrow 4 \text{ sig fig}]$	2
		Total	11